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Abstract

This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-

Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal

interface independent from the grid and advanced in time by a Lagrangian technique. Navier–Stokes equations are

semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes

problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this

purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the

fluid domain of functions of a finite element space. The decomposition–coordination method allows to deal without any

regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical

tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investi-

gated within the simplified thin-flow approximation framework.
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Keywords: Free surface flows; Viscoplastic fluids; Herschel–Bulkley model; Fictitious node FEM; Characteristics/Galerkin method;

Decomposition–coordination method; Gravity currents
1. Introduction

Free-surface flows are involved in a wide range of phenomena, including both natural hazards (mud or

lava flows for instance) and industrial applications (mould filling, to give just one example). In the context

of nuclear safety, we are faced to the challenge of simulating high temperature flows of fluids with complex

constitutive laws, cooled by radiative heat transfer at the free surface. The numerical method we present

here has been designed to cope with this problem and widely used at the Institut de Radioprotection et de

Sûret�e Nucl�eaire (IRSN) within the last decade. A dedicated software, namely the CROCO code, has been
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developed and compared to numerous experimental results [25,28]. Basically, our objective here is to de-

velop a numerical scheme for free surface flows meeting the following requirements: first, for the purpose of

simplicity of implementation, working with a fixed meshing, second, being able to capture steep gradients at
the free surface, finally, dealing with a wide range of constitutive laws for the fluid, including the visco-

plastic ones. The first two items have motivated the development of a specific numerical scheme, combining

the standard characteristic-Galerkin time splitting strategy with a non-standard spatial discretization. The

last requirement is fulfilled by making use of the so-called ‘‘decomposition–coordination’’ method. After a

formulation of the governing equations of the problem under consideration, we detail successively these

two points in Sections 3 and 4. The last part of the paper is devoted to numerical tests, to assess the ca-

pabilities of the presented numerical scheme. To this purpose, we revisit in particular two test problems

consisting in the simulation of two-dimensional isothermal non-Newtonian gravity currents, already
studied in the literature within the so-called thin flow approximation framework. Practical situations ad-

dressed in this paper are two-dimensional, and the exposition is restricted to this case; however, the

transposition to the three-dimensional case of most of the ideas presented here is straightforward.
2. Governing equations

We are interested in this paper in generalized Newtonian fluids [4], i.e., in fluids the behavior of which is
modeled by a viscosity that, in contrast to the Newtonian model, varies with the shear strain rate tensor

D ¼ 1=2ðruþrtuÞ. Using both physical and mathematical arguments, the viscosity is classically shown for

incompressible flows to depend only on the second principal invariant jDj of D with

jDj ¼
ffiffiffiffiffiffiffiffiffiffiffi
D : D

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

DijDij

s
:

The rest of the nomenclature is presented in Table 1. Classical formulation for the constitutive law of those
generalized Newtonian fluids is the following one:

s ¼ lðjDjÞD: ð1Þ

Viscoplastic fluids may also be considered to fall in this class of models but, due to the presence of a yield

stress in the constitutive law, the formulation (1) turns to a multi-valued expression in the so-called ‘‘un-

sheared’’ or ‘‘solid’’ zones of the flow where the shear strain rate vanishes and the apparent viscosity be-

comes infinite.

In fact, the thermodynamic of irreversible isothermal processes together with some results of convex

analysis allows to set a more suitable framework to model standard generalized Newtonian fluids, including
viscoplastic ones. Fluids we will consider here are those ones for which there exists a convex, lower-

semicontinuous, positive and minimal at zero functional w (a thermodynamical pseudo-potential) such that

the constitutive law can be expressed as the generalized equation [12]
Table 1

Nomenclature for the constitutive relations

u Velocity field l Consistency

r Cauchy stress tensor q Density

p Pressure field sY Plasticity threshold

s Shear stress tensor N Exponent

w Internal dissipation potential g Gravity field
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s ¼ rþ pI 2 oDw: ð2Þ

where oDw stands for the subdifferential of w. The constitutive law is now determined by the expression of
this internal dissipation pseudo-potential that is again assumed to depend only on jDj. This class of ma-

terials is generally qualified as fluids presenting a ‘‘standard generalized behavior’’. We give on the left

column of Table 2 the expressions of the dissipation pseudo-potential w for some classical rheological

models we will use in this publication, i.e., the Herschel–Bulkley model and its two limit cases, the Bingham

model and the Power-Law model, but other classical rheological models such as Casson model also enters

this framework. The equivalent relations given on the right column of Table 2 can be derived at least

formally from the constitutive law as defined by (2) and the expression of w, by using the characterization of

the sub-differential oDw

8E wðEÞ � wðDÞP s : ðE � DÞ: ð3Þ

From our point of view, the main interest of those developed forms of the constitutive law is to highlight,

for fluid concerned by a yield stress, the implicit splitting of the fluid domain into its ‘‘flow’’ and ‘‘no-flow’’

parts.

The fluid domain Xf (boundary oXf ), i.e., the volume occupied by the fluid is assumed at any time t of the
time interval �0; T � to lie within a fixed computational domain X which is a polygonal open and bounded

subset of the physical space. We denote by vf the characteristic function of the fluid domain Xf on X
(identically one in Xf and zero elsewhere). The fluid motion is governed by the Navier–Stokes set of

equations over a variable domain:

Find for all t 2�0; T � the fluid domain XfðtÞ ¼ fx 2 X s:t: vfðxÞ ¼ 1g;
the velocity field uð�; tÞ;

����
such that:

ovf
ot þ u � rvf ¼ 0;

q
ou
ot

þ ðu � rÞu
� �

�r � r ¼ qg;

r � u ¼ 0;
rþ pI 2 oDw;

8>>>>><
>>>>>:

ð4Þ

together with boundary conditions over oXf and initial conditions Xfð0Þ � X and uð�; 0Þ.
As soon as the last relation of this system, defining the fluid rheological properties, cannot be exploited

to derive an one-to-one expression of the shear stress tensor of the form of Eq. (1), i.e., for cases under

consideration here, for viscoplastic fluids, the momentum balance equation must be understood in some

weak sense (see e.g. [9] for an in-depth discussion on this topic).
Table 2

Constitutive laws

Herschel–Bulkley

wðDÞ ¼ 2l
Nþ1

jDjNþ1 þ sYjDj jsj6 sY () D ¼ 0,

jsj > sY () s ¼ ðsYjDj þ 2ljDjN�1ÞD

Bingham

wðDÞ ¼ ljDj2 þ sYjDj jsj6 sY () D ¼ 0,

jsj > sY () s ¼ ðsYjDj þ 2lÞD

Power-Law

wðDÞ ¼ 2l
Nþ1

jDjNþ1 s ¼ 2ljDjN�1D



400 D. Vola et al. / Journal of Computational Physics 201 (2004) 397–420
3. Solving moving boundaries problem: the fictitious degrees of freedom method

Many solution methods have been developed in the last decades for modeling flows with interfaces
making use of Eulerian discretizations and some reviews can be found in the literature, see a.o. [20,29] and

references herein. By contrast to all those methods for which the interface is ‘‘captured’’ by analyzing any

characteristic function such as VOF methods [19], level set methods [26,32] or phase field methods [17,18],

the strategy we employ leads to track directly the interface, which representation is completely independent

from the computational grid used to solve the flow balance equation. This method is general, in the sense

that it can be used to solve Navier–Stokes equation as well as, for instance, transport (convection–diffusion)

equations in the fluid, provided of course the velocity field is known. This is why we have chosen to present

it in a dedicated section. It makes use of three basic ingredients, which can be presented as an answer to
respectively the three following problems: describing the free surface and computing its motion, discretizing

in time a partial differential equation (PDE) posed on a moving spatial domain, solving a PDE on a sub-

domain of the computational domain with a general (i.e., independent from the spatial discretization)

boundary. This three items are successively addressed in this section. The first two ones will probably

appear to the reader as nowadays well-known numerical recipes; they are however reasonably detailed

for the sake of completeness. The time interval �0; T � is divided into subintervals �tn; tnþ1� assumed for the

sake of readability to be of equal length dt. We suppose given a quasi-uniform triangulation Th [7] of

the computational domain X; it will be referred to in the following as the computational grid. The
parameter h is defined as h ¼ supK2Th

ðhKÞ where hK denotes the diameter of the smallest circle including the

polyhedron K.
3.1. Free surface motion

The free surface is described by a polygon whose vertex positions Xs are independent from the com-

putational grid and are submitted to the following Lagrangian evolution equation:

dXs

dt
¼ uðXsÞ: ð5Þ

This latter is discretized using the forward Euler method in

Xnþ1
s ¼ Xn

s þ dt unðXn
s Þ: ð6Þ

This method is rather simplistic and can be enriched in the following directions. First of all, as all other

interface tracking methods, it does not address naturally the merging or tearing phenomena. Moreover, no

artificial interfacial viscosity is introduced, which is an advantage in terms of accuracy but, on the opposite,

a drawback concerning the computational reliability. Finally, one may need to adopt some strategies to

cope with some boundary effects: mainly, in the particular context of gravity currents, for setting the height

of the free surface in the entrance section and for the description of the flow front. This is the main difficulty

to overcome for the transposition of the two-dimensional scheme presented here to the three-dimensional
case.

In our algorithm, the Lagrangian transport of the free surface, defining the new fluid domain bound-

aries, is the first stage of the time step.

3.2. Semi-discretization of the balance equations by the transport-Galerkin method

When performing the time discretization on an Eulerian mesh of an unstationary balance equation posed

over a moving boundary domain, any method based on some truncation of Taylor developments must
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come with a reconstruction method of the unknown field values at some previous times at nodes of the new

fluid domain as shown in Fig. 1. Coming back to a Lagrangian description to the fluid motion is a natural

way to avoid such a complex reconstruction of the unknown fields. The trajectory curve (the characteristic
nnþ1
x , see a.o. [3,14]) of the fluid particle that will be at position x at time tnþ1 is solution of the final value

ODE

dnnþ1
x ðtÞ
dt ¼ unðnnþ1

x ðtÞÞ 8t 2 ½tn; tnþ1�;
nnþ1
x ðtnþ1Þ ¼ x;

8<
:

which is is approximated at the first order by n� : ½tn; tnþ1� ! R2:

n�ðtÞ þ ðtnþ1 � tÞunðn�ðtÞÞ ¼ x:

Then the method of characteristics leads to an approximation of the material derivative of u (here to the

first order)

du
dt

ðx; tnþ1Þ � unþ1ðxÞ � unðn�ðtnÞÞ
dt

:

As an other advantage of this Lagrangian approximation method, in opposite to standard methods leading

to an approximation of the local derivative, it overcomes directly numerical difficulties due to the non-

symmetry of the convective operator ðu:r�Þu and the efficiency of the finite element method for symmetrical

differential operators is retrieved.

3.3. Spatial discretization: the fictitious degrees of freedom method

Finally, the problem we then have to solve at each time step is a second order elliptic system, here a

generalized Stokes problem, posed over a new fixed domain Xnþ1
f . To this purpose, the general form of a

Galerkin method for the momentum balance equation, for instance, reads:

Find unþ1 2 Unþ1 such that 8v 2 V;Z
Xnþ1
f

q
unþ1ðxÞ

dt
:vdX�

Z
Xnþ1
f

r � rnþ1:vdX ¼
Z
Xnþ1
f

f :vdX;
ð7Þ

where Unþ1 and V are subspaces of the Sobolev space ½H1ðXnþ1
f Þ�2 to be defined according to the boundary

conditions of the problem. As the fluid domain interface representation is strictly disconnected from the
Fig. 1. Computational grid and fluid domain at time tn and tnþ1. Unknowns fields must be reconstructed at node marked by a bullet for

all previous times needed by the time discretization method.
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computational grid Th, the construction of an approximation space for Unþ1 and V, together with the

associated quadrature rules for a (possibly exact) integration over Xnþ1
f , is far from standard. This is the

topic of the rest of the section.
Among all polyhedra of Th, we exclude those that do not intersect Xnþ1

f . We will qualify hereafter a

polyhedron that lies entirely on Xnþ1
f as ‘‘filled’’ polyhedron and a polyhedron that has a partial intersection

with Xnþ1
f as ‘‘partially filled’’ polyhedron, see Fig. 2.

Over ‘‘filled’’ polyhedra, we choose a standard finite element approximation. Over ‘‘partially filled’’

polyhedra, we keep the space spanned by the same shape functions or, in other words, we choose as ap-

proximation space the restriction to the fluid domain of the standard finite element space under consid-

eration. This procedure leads to make use of fictitious nodes, i.e., to consider nodes that will be associated

to discrete unknowns for the problem even if they are located outside the fluid domain (nodes 2 and 3 on
right side of Fig. 2). These ‘‘fictitious degrees of freedom’’ have no other meaning than being involved in the

development of the unknown fields over K \ Xnþ1
f . The obtained discrete space provides an internal ap-

proximation of Unþ1 and V whenever no Dirichlet boundary condition is to be imposed on the immersed

boundary of the fluid domain. In the opposite case, Dirichlet conditions must be imposed in some weak

sense (by penalization or using Lagrange multipliers), see Section 5.1 for a practical example.

Over filled polyhedra, standard quadrature rules may be employed (see the left side of Fig. 3 for a third-

order rule). To build same order quadrature rules over a ‘‘partially filled’’ polyhedron K, we proceed as

follows. The polygonal domain K \ Xnþ1
f is first triangulated. The specific quadrature rule on K \ Xnþ1

f is
then obtained by addition of the standard quadrature rules on each generated triangle, see Fig. 3. No

geometrical aspect property is required for triangles issued from the triangulation process, contrary to those

of the computational grid, and any fast triangulation algorithm such as the ‘‘cut-an-ear’’ algorithm [34] can

be used.
1

3

2 1

3

2

Fig. 2. ‘‘Filled’’ and ‘‘partially filled’’ triangle.

Quadrature
point

Quadrature
point

Fig. 3. Example of quadrature rules for a ‘‘filled’’ and ‘‘partially filled’’ triangle.
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Defining a generalized Clement interpolation operator, it is shown in [21] that, under mild regularity

conditions for the free surface, the non-standard finite element space built here provides an approximation

of the same order as standard finite element discretizations, i.e., using ‘‘fitted-to-the-physical-domain’’
grids. In particular, the same accuracy is kept up to the immersed boundary. This fact is also checked by

numerical experiments described in [21] and by the test presented in Section 5.1.

From a practical point of view, one only needs with this numerical scheme to make use of special

quadrature rules for the algebraic problem assembling. When using object-oriented designed software, it is

then possible to ‘‘isolate’’ the responsibility of providing integration rules for a given polyhedron in such a

way that how the integration is performed is hidden for the assembling process and any FE solver designed

to a ‘‘fitted-to-the-physical-domain’’ grid can be directly reused. This is the case for the software used here,

namely the CROCO code based on the software component library PELICANS, both developed at IRSN
by our team.

3.4. Overall algorithm

Finally, the numerical scheme presented here can be viewed as a time splitting scheme as summed-up in

Table 3. The convected velocity u�ðxÞ is used to build the explicit part of inertial term and has to be

evaluated at the points of the quadrature rules.
4. Solving the generalized stokes problem for quasi-Newtonian fluids

Our purpose in this section is to design a numerical strategy to cope with the wide range of constitutive

models presented in Section 2 without any regularization, even in presence of yield stress. This strategy is

based on the seminal works of Duvaut and Lions [9] and Fortin and Glowinsky [11,13, Chapter III and VI

of respectively] and has already been presented in case of the Bingham model in [35] (see also e.g. [8,30] for

related works). It is essentially summed-up here, with a special emphasis on how it can be extended to the
whole class of constitutive models under consideration. In this section, for readability’s sake, exponents

referred to time step will be omitted. Using classical results for variational inequalities of the second kind [9]

and the definition of the subdifferential, one can give a formally equivalent form of the generalized Stokes

problem (7), find u 2 fv 2 Vjr � v ¼ 0g such that

GðuÞ þFðDðuÞÞ ¼ min
v

GðvÞ½ þFðDðvÞÞ�;

where the terms due to the constitutive law are separated from inertial and external forces terms:

GðvÞ ¼ q
2dt

Z
Xf

v:vdX�
Z
Xf

f :vdX and FðDðvÞÞ ¼
Z
Xf

wðDðvÞÞdX:

In functional F, w represents the internal dissipation potential of Section 2.
Table 3

Time splitting numerical scheme

From time tn to time tnþ1

) Convective step:

• Free surface transport independent of the computational grid Xf ðtnÞ!
un
Xf ðtnþ1Þ,

• Quadrature rules on ‘‘partially filled’’ polyhedra,

• Determination of the ‘‘convected velocity’’ by the method of characteristics for all x 2 Xf ðtnþ1Þ; find u�ðxÞ ¼ unðn�ðtnÞÞ.
) Diffusive step:

generalized Stokes problem ð7Þ on Xf ðtnþ1Þ
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An auxiliary primal variable c representing the shear strain rate DðuÞ is then introduced (decomposition

step). Now one has to find

ðu; cÞ 2 fðv;wÞ 2 V�Wjr � v ¼ 0;w ¼ DðvÞg such that : GðuÞ þFðcÞ ¼ min
ðv;wÞ

GðvÞ½ þFðwÞ�;

where the space W ¼ ½L2ðXÞ�4. The constraints r � ðuÞ ¼ 0 and c ¼ DðuÞ are relaxed by introducing two
Lagrange multipliers p and k homogeneous to a pressure and to a shear stress, respectively (coordination

step), leading to the following saddle point problem, find ðu; c; p; kÞ 2 V�W� Q�W such that:

Lrðu; c; p; kÞ ¼ inf
ðv;wÞ2V�W

sup
ðq;mÞ2Q�W

Lrðv;w; q; mÞ
 !

; ð8Þ

where Lr stands for the augmented Lagrangian functional defined on V�W� Q�W by

Lrðv;w; q; mÞ ¼ GðvÞ þFðwÞ � hm;w� DðvÞiW � hr � v; qiQ þ
r1
2
jjw� DðvÞjj2W þ r2

2
jjr � vjj2Q;

where Q ¼ L2
0ðXÞ and r1, r2 are two penalty parameters.

We associate to each polyhedron K of the triangulation Th three Lagrange finite elements to build

discrete sets of admissible velocities, pressures and additional variables:

Vh ¼ Xh½ �2 ¼ vi 2 C0ð�XÞ such that vijK 2 uK 8K 2 Th

n oh i2
� V;

Qh ¼ q 2 L2ð�XÞ such that qjK 2 pK 8K 2 Th

n o
� Q;

Wh ¼ wi;j 2 L2ð�XÞ such that wi;jjK 2 wK 8K 2 Th

n oh i2�2

� W;

where uK and pK are assumed to be the sets of linear functions on K whereas wK is assumed to be the set of

constant functions over K.
This association of such equal order approximation spaces for the velocity field and the pressure field

does not fulfill the Brezzi–Babuska stability condition for the standard velocity/pressure linear Stokes
mixed problem. This can be circumvented using the Brezzi–Pitk€aranta non consistent stabilization method

[6].

Remark 1. Note that consistent methods such as GLS or PSPG methods cannot be directly extended to the

problem at hand. Indeed, they are based on a ‘‘strong’’ formulation of the form of Eq. (4), and such a

relation does not hold for fluids exhibiting a yield stress. Use of consistent stabilization methods then seems

to force to regularize in some sense the problem. As an example, Peri�c and Slijep�cevi�c [27] have used the

GLS stabilization method for a regularized problem based on the Panastasiou’s model for viscoplastic

fluids.

We have checked for a class of abstract mixed problems including Stokes problem for Bingham fluids

that the Brezzi–Pitk€aranta stabilization technique leads to a stable discretization and that the perturbation

introduced does not change significantly the error estimates [22].

We search now for ðuh; ch; ph; khÞ 2 Vh �Wh � Qh �Wh such that

Lhðuh; ch; ph; khÞ ¼ inf
ðvh ;whÞ2Vh�Wh

sup
ðqh ;mhÞ2Qh�Wh

Lhðvh;wh; qh; mhÞ
 !

; ð9Þ

where Lh stands for the augmented Lagrangian functional defined on Vh �Wh � Qh �Wh by
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Lhðvh;wh; qh; mhÞ ¼ GðvhÞ þFðwhÞ � hmh;wh � DðvhÞiW � hr � vh; qhiQ
þ r1

2
jjwh � DðvhÞjj2W þ r2

2
jjr � vhjj2Q � a

2

X
K2Th

h2K jjrqhjj2K

and where the last term in this Lagrangian functional corresponds to the Brezzi–Pitk€aranta perturbation.
The problem is solved using a variant of the fully decoupled algorithm ALG2 of [11,13] which can be

viewed as an Uzawa method with a staggered update of the primal variables, see Table 4. The algorithm is

proven to be convergent provided that the following relations between descent and augmentation pa-

rameters hold [22]:

q1 6
1þ

ffiffiffi
5

p

2
r1 and q2 6 2r2:

As Wh is the set of piecewise constant tensors on Th, one easily checks that the optimality condition

associated to c (second step of the algorithm) turns to the following series of scalar minimization problems,

for all K 2 Th find clK such that:

clK ¼ c�h
jjbK jj

bK ;

where bK ¼ kl�1
K þ r1R

K
dX

R
K DðulhÞdX and c�h is the solution of:

hðc�hÞ ¼ minz2R hðzÞ;
hðzÞ ¼ wðzÞ þ r1

2
ðzÞ2 � jjbK jjz

h i
:

(
ð10Þ

The solution of each of those minimization problem (10) depends on the constitutive law. As an example, in

case of the Herschel–Bulkley model, it can be developed to yield, for all K 2 Th:

jjbK jj6 sY () jjclK jj ¼ 0;
jjbK jj > sY () w0ðjjclK jjÞ þ r1jjclK jj � jjbK jj ¼ 0;

�

where the singularity for vanishing shear strain rate magnitude has been circumvented. The non-linear

equation corresponding to the sheared zones (jjbK jj > sY) admits an explicit solution in case of Bingham

fluids, see [10,35] and can be solved in the Herschel–Bulkley case using the Newton method or any of its

variants. In the quite general case, one has to solve the scalar minimization problem (10) of a convex, semi-
continuous and positive functional and many methods have been developed since the nineties to this

particular aim, see a.o. [24].
Table 4

Algorithm for the diffusive step

ðul�1
h ; cl�1

h ; pl�1
h ; kl�1

h Þ being known, find ðulh; clh; plh; k
l
hÞ solving the following four steps successively

8ðvh;wh; qh; mhÞ 2 Vh �Wh � Qh �Wh:

• hG0ðulhÞ; vh � ulhiVh
� hpl�1

h ;r � ðvh � ulhÞiQh
þ hkl�1

h ;rðvh � ulhÞiWh

þr1hrulh � cl�1
h ;rðvh � ulhÞiWh

þ r2hr � ulh;r � ðvh � ulhÞiQh
P 0

• FðwhÞ �FðclhÞ � hkl�1
h ;wh � clhiWh

þ r1hwh �rulh;wh � clhiWh
P 0

• hplh � pl�1
h ; qhiQh

¼ �q1 hr � ulh; qhiQh
þ a

P
K2Th

h2Khrplh;rqhiQh

h i
• hklh � kl�1

h ; mhiWh
¼ �q2hclh �rulh; mhiWh
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5. Numerical experiments

5.1. Annular viscometer

To our knowledge, no problem set on a multidimensional polygonal domain and admitting an analytic

solution can be found in the literature for viscoplastic fluids. As an alternative, we consider an axisym-

metrical problem that will be treated in the following as a fully bi-dimensional one: the tangential creeping

flow in a viscometer made of two coaxial cylinders. The outer cylinder is kept fixed whereas a constant

angular velocity x ¼ 1 is imposed to the inner cylinder and the fluid is supposed to stick to the apparatus

boundaries, see in Fig. 4. Depending on the rheological properties of the fluid, an analytical solution can be

obtained. For the Power-Law model and by extension for the Newtonian model, the tangential velocity is
[4, Chapter 4, p. 239]

uhðrÞ ¼ rx
Ro

r

� �2=N
"

� 1

#,
Ro

Ri

� �2=N
"

� 1

#
: ð11Þ

For fluids concerned with a yield stress, we restrict ourselves to cases where a ‘‘rigid’’ zone appears near the

outer cylinder. Analytical solutions that provide the transition radius between the sheared and the solid
zones and the tangential velocity can be obtained at least for certain values of the exponent N . For a

Bingham fluid ([4, Chapter 4, p. 228]), the transition radius Rl is solution of

Rl

Ri

� �2

� 2 ln
Rl

Ri

� �
� 2

ffiffiffi
2

p
lx

sY

 
þ 1

!
¼ 0

and, in the sheared zone, the tangential velocity is

uhðrÞ ¼ r

ffiffiffi
2

p
sY

4l
Rl

r

� �2
 

� 2 ln
Rl

r

� �
� 1

!
: ð12Þ

For a pseudoplastic Herschel–Bulkley fluid of exponent N ¼ 0:5, the transition radius Rl is solution of:
Ri=0.5
Ro=1

Symmetry
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ω=1
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ry

Fig. 4. Principle diagram.
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Rl

Ri

� �4

� 4
Rl

Ri

� �2

þ 4 ln
Rl

Ri

� �
� 8

ffiffiffi
2

p
l2x

s2Y

 
� 3

!
¼ 0

and, in the sheared zone, the tangential velocity reads

uhðrÞ ¼ r

ffiffiffi
2

p
s2Y

4l2

3

4

�
þ R4

l

4r4
� R2

l

r2
þ ln

Rl

r

� ��
: ð13Þ

The aim of this numerical experiment is twofold as both the methodologies to take into account the con-

stitutive law and to approximate the system of equations on a domain immersed on a fixed computational

grid are tested. Two series of finer and finer unstructured meshes have been built using a Delaunay–Vorono€ı
automatic meshing process (EMC2 pre-processor [31]). Meshes of the first series are fitted on the physical

domain (Fig. 4) whereas the other ones are built on a larger geometrical domain. The coarsest meshes of the

two series are drawn on Fig. 5. Computations made on the grid fitted to the physical domain will be referred

as ‘‘fitted’’ computations by opposite to those made with a ‘‘free surface’’. Finer meshes are obtained by using

twice the number of vertices on each line segment or each arc of the domain boundaries. Analytical solutions

are represented by lines on Fig. 6 for the rheological parameters of Table 5. We have added as symbols the

computed nodal values obtained with a coarse grid fitted to the physical domain. Those values are in good

agreement with analytical solutions what will be confirmed by the following error bound analysis. For the
‘‘free surface’’ computations, an appropriate boundary condition must be added at the free surface. If the

constitutive law is sufficiently regular, stresses are defined everywhere and analytical ones can be used to

define a Neumann boundary condition at the outer cylinder that is to say for the Power-Law model:

r:~n ¼ 2l
x

N Ro

Ri

� �2=N
� 1

� �
2
664

3
775

N

~t;

where~n and~t denote the normal and the tangent to the free surface, respectively. On the opposite, for the

fluids concerned with a yield stress, as we are interested in cases where a ‘‘rigid’’ zone appears near the outer

cylinder, the velocity field must be constrained to vanish on the free surface by penalization.
Fig. 5. Coarsest meshes for the fitted to physical domain series and the series based on a larger geometrical domain.
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Table 5

Rheological parameters for the viscometer benchmark

Newtonian Power-Law Bingham Herschel–Bulkley

l ¼ 1 N ¼ 0:5, l ¼ 0:08 sY ¼ 10, l ¼ 1 N ¼ 0:5, sY ¼ 0:12, l ¼ 0:0672
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The term

1

�

Z
oXN

jjuhjj2doX; � � 1;

where oXN denotes the free surface, is indeed added to the saddle point problem (9). The remaining of this

section is aimed at the validation of both methodologies by the convergence analysis of the relative L2-

norm and H1-norm of the error:

jjue � uhjj0
jjuejj0

; where jjue � uhjj20 ¼
R
Xf
jjue � uhjj2 dX ;

jjue � uhjj1
jjuejj1

; where jjue � uhjj21 ¼ jjue � uhjj20 þ
R
Xf
jjrðue � uhÞjj2 dX ;

where ue denotes the analytical solution. The results for the computations performed with the two series of

‘‘fitted’’ and with ‘‘free surface’’ meshes are provided on Fig. 7 for the Newtonian and the power-law model

(Neumann boundary condition) and on Fig. 8 for the Bingham and the Herschel–Bulkley model (outer
boundary velocity constrained by penalty). The results obtained with the two series of meshes are similar

which provides a validation of the methodology used to approximate the system of equations on a domain

immersed in a fixed computational grid. Moreover the convergence rates we obtained for the Newtonian

model are those that was expected. For the Bingham model, we have proved in [22] that with the Brezzi–

Pitk€aranta stabilization one retrieves an error bound estimate of the same order than that one Han and

Reddy obtained for space discretizations that fulfills the BB condition, that is to say

jjue � uhjj1 6C
ffiffiffi
h

p
;
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where C is a positive constant independent on the mesh parameter h. But one can also found in [22] an

extended analysis of this viscometer benchmark for the Bingham model that shows that, due to a higher

regularity of the analytical solution in this specific case, convergence rates of higher order can be expected

and are reached

jjue � uhjj1 6Ch
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j logðhÞj

p
:
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As can be observed in the results of Fig. 8, those improved convergence rates are again obtained for all

tested constitutive laws. In addition, a second order convergence rate is observed in L2-norm.

As a last verification test, we have made a convergence study with a series of meshes obtained by cutting
successively the triangles of the original coarse mesh fitted to the physical domain (left mesh of Fig. 5) into

four triangles of equal size. As expected in this case we have checked that the above-mentioned improved

convergence rates are lost due to the well-known ‘‘variational crime’’, see for example [5]. The error is

indeed never less than 3� 10�3 and 1:4� 10�2 for the relative L2-norm and for the relative H1-norm,

respectively.

More results concerning the fictitious degrees of freedom method applied to some elliptic PDEs posed on

domain with immersed boundary can be found in [21].
Table 6

Rheological parameters for the models of Table 2

Newtonian Power-Law Bingham Herschel–Bulkley

pseudoplastic

Herschel–Bulkley

dilatant

l (N m�2 s) 0.5 1.74 0.01 0.25 0.0025

sY (Nm2) 0 0 5 3.5 4.9

N 1 0.15 1 0.4 1.5

θ

gate

θ

g

1m

0.05m

Fig. 9. Principle diagram.
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Fig. 10. Successive profiles of the free surface at times 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.5, 1.7, 2, 2.5, 3, 4, 5, 10 s for the Bingham fluid.



Fig. 11. Free surface profiles and shear strain rate magnitude for the Bingham fluid at times 0.1, 0.5, 1.3, 2, 3, 5, 6, 10 s (when the flow

is stopped). Horizontal axis length is of 4 m whereas the vertical axis length is of 0.045 m for the first two figures and of 0.025 m for the

last six ones. Sheared zones are in black to light gray gray-scales, solid zones are in white and a black line marks the separation between

zones where the shear strain rate magnitude is lower or greater than 5 s�1.

0 1 2 3 4
Position along spreading plane

0

0.01

0.02

H
ei

gh
t

Fig. 12. Comparison of the permanent profile obtained for the Bingham fluid with an analytical one valid at the downstream front

[23].
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5.2. Flow down a slope

The rheological properties of muds are known to exhibit a non-Newtonian behavior, in some cases

accurately described by a viscoplastic model with shear-thinning [2] and flows of mud down a slope have

been one of the most frequently encountered application fields for non-Newtonian fluid mechanics. The

problem considered in this section is inspired from such a study [16]. This analysis, proposed by Huang and

Garcia, is based on the thin-flow approximation for which the rheological properties of the fluid are
modeled as a frictional term at the interface between the fluid and the plane. To reach, from the data of

Huang and Garcia’s computation, the ‘‘volume’’ rheological properties, one would need to build some

correlations between the constitutive relation and the interfacial friction strength, for instance by a series of

numerical experiments. This work is out of the scope of the present study and we have restricted ourselves
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Fig. 14. Profiles obtained at 100 s for the different rheological models.
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to a qualitative analysis. All rheological properties have then been chosen to fulfill the two following re-

quirements: being in a range of magnitude compatible with the rheological properties of muds and, above

all, allowing to make comparisons between the different rheological models, see Table 6 and Fig. 13. All

fluids are assumed to have a density of 1000 kg/m3. The principle diagram is drawn in Fig. 9. An amount of

fluid is deposited on an inclined plane (angle h ¼ tan�1ð0:05Þ – the aspect ratio is thus large) and is con-

tained by a gate that is instantaneously removed at initial time. The fluid is assumed to stick to the
spreading plane. The computation duration is of 100 s and an adaptive time step procedure is adopted with

an initial time step of 10�2 s. Calculation are performed with a computational grid made of 14,000 triangles

and refined in the vicinity of the initial fluid front.
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Fig. 18. Free surface profiles and shear strain rate magnitude for the Newtonian fluid (Bi¼ 0) at times 103, 5� 103, 7:5� 103 and 104.

The radius axis and the vertical axis lengths correspond to 2 and 0.2 unit-lengths, respectively. Sheared zones are in black to light gray

gray-scales.
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We first present extensively the results we obtain for the Bingham fluid. The evolution of the free surface

profiles from the initial fluid location to the time the fluid comes to rest is drawn in Fig. 10. The flow is

essentially split into two stages, first a fast sinking of the fluid top followed by a slower viscous spreading

until it stops by t ¼ 10 s. Maps of the shear strain rate magnitude at different times are drawn in Fig. 11. We

observe a decomposition of the flow in essentially three zones:

• a first zone located near the spreading plane and in the downstream part of the flow where the shear

strain rate magnitude is very large (895 s�1 at 0.5 s),
• an upstream unsheared zone, which becomes smaller and smaller in the beginning of the transient but

never disappears, before growing up to cover the whole flow at the end of the spreading,

• between those last two zones, an intermediate one where the fluid is sheared but with a shear strain rate

magnitude considerably lower than near the spreading plane (lower than 5 s�1, i.e., about two-hundred

times lower than the maximal shear strain rate magnitude).
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Fig. 19. Free surface profiles and shear strain rate magnitude for the Bingham fluid (Bi¼ 0.1) at times 103, 5� 103, 7:5� 103 and 104.

The radius axis and the vertical axis lengths correspond to 1 and 0.55 unit-lengths, respectively. Sheared zones are in black to light gray

gray-scales.
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This decomposition remains valid from the onset of the flow until the fluid comes at rest. The picture

obtained here then slightly differs from the scheme used in simulations of slow spreading of a viscoplastic

fluid quoted in the literature, which, to our knowledge have all been made under the thin flow assumption

combined with the so-called two-layers hypothesis: at each ‘‘horizontal’’ location, the flow is supposed to be

split into an unsheared upper layer and a sheared lower one. However, no any significant difference is to be

expected in the global flow behavior as long as the apparent viscosity within the intermediate layer remains

large.
One may note that no smoothing of the free surface is processed. Together with the sharp aspect of the

initial fluid domain, this explains the small oscillations that can be observed on the profile of the free surface

during the convection-dominated stage of the flow (see Fig. 10) whereas they have disappeared after the

diffusion-dominated stage (see Figs. 10 and 12). Mass conservation is a key point for those free surface

problems, a mass lost is indeed observed during the convection-dominated stage of the flow but remains

limited as the cumulative mass loss is equal to �0:371% of the original mass when the flow stops. We have

made a comparison of the permanent profile we obtain when the flow stops with the analytical profile

known to be valid in the downstream part of the fluid [23], where the fluid height h is given as a function of
the abscissa along the plane x by

tanðhÞðx� xfÞ ¼
h
�h
þ ln 1

�
� h
�h

�
;

where xf is the downstream front position and
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Fig. 21. Evolution of the free surface profiles from time 5� 102 to time 1� 104 by step of 5� 102 time units for various rheological
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Fig. 22. Velocity magnitude maps for the Newtonian fluid and for the Bingham fluid at time 1� 104. The axis lengths are, respectively,

the same as in Figs. 18 and 19.
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�h ¼ qg
sY

sinðhÞ

is the expression of the theoretical minimal height beyond which an infinite uniform layer of viscoplastic

fluid deposited on an inclined plane starts to flow without any external perturbation. Profiles are in good

agreement in the downstream zone as checked in Fig. 12, the observed slight differences being due to history

effects.
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Final part of this analysis is devoted to the comparison of spreading evolutions obtained for various

rheological models presented in Table 6 and Fig. 13. The free-surface profiles at 100 s for all rheological

models are drawn in Fig. 14. As can be observed in Fig. 15, the Bingham and the dilatant Herschel–Bulkley
rheological fluids came to rest before 10 s. The sharp upstream zone is similar for those two fluids. A larger

part of this upstream zone has sunk down for the Herschel–Bulkley pseudoplastic fluid that is almost

stopping at 100 s and for the Power-Law fluid whereas it is quickly spread for the Newtonian fluid. The

time evolution of the front position and the evolution of the maximal height versus the front position are

shown in Figs. 15–17. Those results are qualitatively in agreement with the results of Huang and Garcia

[16].

5.3. Growing of isothermal lava domes

We are now interested in a problem that has been defined by Balmforth et al. [1], namely the simulation

of the growth of an isothermal quasi-Newtonian dome, which can be considered as an idealized repre-

sentation of lava domes eruption above the conduit that links the magma chamber to the atmosphere (see

[15,33] for more details about the physical background).

The principle diagram is drawn in Fig. 20. The non-dimensionalization of the governing equations and

of the rheological model are proposed in [1] and we will use the same notations. The entrance flow on the

vent of radius 0.15 unit-length is assumed to keep the following constant with time value:

uvent:n ¼ 2:25� 10�3 � 1:

�
� r

0:15

� �2�
:

Moreover we have assumed that, at initial time, the fluid is at rest at the location reached after 0.25 time
unit of pure convection, leading to the following initial shape for the free surface:

r 2 0; 0:15½ �; h ¼ 5:625� 10�4 � 1:� r
0:15

� �2� �
;

r > 0:15; h ¼ 0:

8<
:
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The computation duration is of 104 unit-times with a constant time step of 2 unit-times (saving for post

processing are made each 5� 102 unit-times). Calculation are performed with a computational grid made

of 21,000 triangles and refined in the vicinity of the vent. Maps of the shear strain rate magnitude for
various times are drawn on Fig. 18 for a Newtonian behavior and on Fig. 19 for a Bingham behavior

(Bi¼ 0.1). Except for the zone located up to the vent, the sheared zones are almost uniformly distributed for

the Newtonian fluid whereas, for the Bingham fluid, the most sheared zones are concentrated near the

spreading area.

Finally, we finish this study by a comparison of the domes evolutions for various fluids of different

rheological properties, the Newtonian fluid, two Bingham fluids (Bi¼ 0.01 and Bi¼ 0.1) and, to illustrate

the yield stress and shear-thinning effects, a Herschel–Bulkley fluid (Bi¼ 0.01 and N ¼ 0:5) and a Power-

Law fluid (N ¼ 0:5). Results are shown in Figs. 21–25.
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